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SUMMARY

A creep damage accumulationmodel is presentedthat makes use of the

Kachanovdamagerate conceptwith a provisionaccountingfor damage that

resultsfrom a variablestresshistory. This is accomplishedthroughthe

introductionof an additionalterm in the Kachanovrate equationthat is

linearin the stressrate. Specificationof the materialfunctionsand param-

eters in the model requirestwo types of tests constitutinga data _ase:

(1) standardconstant-stresscreep rupturetests, and

(2) a sequenceof two-stepstress creep rupturetests

INTRODUCTION

One of the primaryfailuremodes consideredin the ASME Code Case N-47

(Ref. 1) for structuralcomponentsin elevated-temperatureservice is that of

creep ruptureunder quasi-steady,long-termloading. The Code Case specifies !_

that predictionsof time to failureunder such loadingconditionsshouldbe

based on the "time-fractionlaw,"originallyproposedby Robinson (Ref. 2),

f tf dt
= 1 (1)

in which tf denotesthe time to failureand tR(a) representsthe "creep-

rupturecurve"determinedfrom uniaxialtensilecreep tests at constantstress.

Severalauthors(e.g.,Refs. 3 to 5) have pointedout that Eq. (1) is not

strictlysatisfiedfor many structuralalloysunder variablestressconditions.

For example, it is oftel _bservedthat
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tf dt
< i (2)m

in uniaxial two-step creep rupture tests involving a step-up in tensile stress

and

tf ,

dt
1 (3)

, o

for a stress down-step*.

,, Here, a creep damage model is proposed similar to that originally pro-

posed by Kachanov (Ref. 6) - and employed or extended by numerous workers

-_i (e.g., Refs. 7 to 9) - but which includes an additional term depending linearly

, on the stress rate. This resJlts in a time-independent contribution to the 'I

_ predicted damage arising from variations in stress in an already creep damaged

material. The model is stated here for isothermal and noncyclic conditions;

extensions to nonisothermal conditions and to reverse stressing will be sub-

jects of continued research.

The proposed damage rate equation is shown to be equivalent to a damage

law of the form _

i'

tf i_

dt (4) "__---r--x-=1 +
_R_OJ

in which tf and tR(o) have the same meanings as in Eq. (1) and : is a

functional of the stress history a(t). For some stress histories _ is nega-

tive and Eq. (4) predicts a comparatively shorter time to failure than Eq. (1);

in other cases _ is positive and Eq. (4) predicts a longer time to failure.

!

;_ *Notably, this effect of stress sequencing is opposite to that ordinarily ob-

served in fatigue testing.
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The implementation of the model requires a data base made up of two types

of tests:

(1) standard constant-stress creep rupture tests, and

, (2) variable (two-step) stress creep rupture tests.

A unique feature here is that the variable stress experiments are used
I

not solely as tests to furnish evidence for verification of the model, as is

commonly the case, but instead they make up an essential part of the data base

for establishing the functional forms and parameters of the model.

As a background for the development of the proposed model, the connection

between the Kachanov damage model and the time-fraction law, Eq. (1), will

first be demonstrated. The proposed model will then be stated along with a

discussion of the testing required for its specification.

THE KACHANOV MODEL AND THE TIME-FRACTION LAW

The Kachanov damage model, giving the rate of degradation of a material

under creep at elevated temperature, is frequently stated in the separable form

; : _ f(o) (5)
I
I

in which ¢ is the material continuit_ and o is the applied stress. For a i

material completely intact _ = 1, and for complete destruction _ = O.

The rupture life tR under constant stress is found by integration of

Eq. (5) and is

tR(o) g(1) - 9(0) const., = f(o) - _ (6)

In the special case where f = Con, Eq. (6) takes the familiar form

const.
tR(°) - n (7)

o

The failure time tf under an arbitrarily varying stress is found from

Eqs. (5) and (6) as

3 %
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tf
g(1) - g(o) = dt (8)

or

tf dt
t = I (9)

which is identical to the time-fraction law, Eq. (1). Whatever the functions

f and g, Eq. (5) demands the satisfaction of Eq. (i) at failure. The

Kachanov creep damage model, expressed in the separable form of Eq. (5),

cannot lead to the conditions stated in Eqs. (2) or (3).

THE PROPOSEDDAMAGEMODEL

Here, a damage rate equation similar in spirit to that of Eq. (5) is

introduced that contains an additional term proportional to the stress rate _.

That is, we propose the rate equation

i
n

: h(o,_)_ - C o__ (10) ,.
_m

in which the second term is taken to be a special form of the Kachanov equa- ii
,I

tion, Eq. (5), whereas the first term is taken linear in the stress rate _. ii

The first term represents a time-independent contribution which arises from '_

changes in applied stress; the second term represents the usual time-dependent

contribution as proposed by Kachanov. The constants C, n, an_ m and the

function h are determined by experiment as described below.

Equation (10) is consistent with the view that creep damage occurs as the

result of the creation of interior voids or cavities. In the context of step-

wise creep tests, th_ first term in Eq. (10) allows for either further damage

or heali_ of prior damage as a consequence of changes in stress. This can be

thought of as resulting from further widen]_or partial closin_of existing

W,%
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voids dependingon the directionof the stresschange. So that stres_ changes

do not effect the yet undamagedmaterial,it is reasonableto restrictthe

function h such that

h(o,l) : 0 (11)

With this restriction,it is seen that in ordinarycreep rupturetests,

in which an undamagedspecimen is broughtrelativelyabruptlyto a constant

stressand held (i.e.,; = 0), there is no contributionfrom the first term in

Eq. (10) throughoutthe test and we can write

,m_ = _ Condt (12)

or

tR(o)= 1 (13)
C(m+l)o n

Optimal values of l/[C(m + 1)] and n can thus be determined using Eq. (13)

and data pairs in the form (tR, o) from standardcreep rupturetests.

The variationof the materialcontinuity ¢ in creep rupturetests is

likewisefound by integratingEq. (10)with the first term absent. Thus

, = - (14) '_

Only for the very specialcase m = o, correspondingto the second term

in Eq. (10) being independentof ¢, is the diminuationof materialcontinuity

(or the accumulationof damage D = 1 - _) linear in time. With m > o,

varies nonlinearlyin time, slowly at first but at a higher rate as internal

damageoccurs.

Hypotheticaltrajectoriesof two creep rupturetests at stress levelsof

°1 and 02 are shown as the solid lines in the ,o, plot of Fig. (1).

%

5 _'_
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#

Each curve originatesat the intersectionof _ = 1 andld_-_=#'--o and each

terminates,at failure, in the plane _ = o. lh_ locus of rupturepoints in

, = o is definedbyfd-E_ = 1.

We now assume that the stress dependenceof the minimumcreep rate _m

in constant-stresscreep tests can be adequatelyrepresentedby the Norton law

(Ref. 10)

_m = A°N (15)

where A and N are known constants. The subsequentdevelopmentis not de-

pendenton the particularchoice of the Norton law; it has been chosenbecause

it has wide applicationand is simple. We furtherassume that the subsequent

accelerationof creep in such tests is due to internaldamage accumulation*

and that, followingKachanov,Eq. (15) remainsvalid with o replacedby the

"effective"stress a/v, i.e., we take _'_

•¢ = A (16) :

DividingEq. (15) by Eq. (16) and solvingfor _, we get

(17) ii
= !!

indicating that we can assign values of _ along a given creep-rupture curve,

I •

The minimum creep rate _m can be readily identified, and c can be deter-

mined at each instant of time along the curve,

Eliminating _ from Eqso (14) and (17) we get:

*If, as is usuallythe case, the creep rupturetests are conductedunder
constantload rather than constantstress,the contributionof the creep
accelerationrelatedto geometrychange must be accountedfor.

%
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S

S: _ dt (18)

As (_ml_) is measurable along a given creep curve, we can generate data sets in

the form (_ml_,., t) directly from creep-rupture tests and use these with

• Eq. (18) to obtain optimal values of Nl(m + i). With N known, this estab-

lishes m; with m and 11[C(m + 1)] in Eq. (13) known, C is determined.

Thus, n, m, and C are known and the second term in Eq. (10) is fully speci-

fied from creep-rupture data alone.

Before proceeding with the determination of h (a,_) in Eq. (10), we

consider the predicted response of a two-step stress test when h _ o and

Eq. (10) is of the classical Kachanov form. In this case, the image of a

typical two-step creep rupture test is shown as OABC in Fig. I. As the abrupt

step from cI to o2 occurs (AB), _ remains constant. Note that the pro-

jections of the step test OABC as well as those of the constant stress tests at

oI and o2 are identical in the * J t-RR] plane. Moreover, for each test,
constant or variable stress,

S dt =
tf 1 (19) _

at failure.

_ Next, we consider stepped creep rupture tests designed to establish the

form of the function h(o,_). The image, predicted by Eq. (10), of a test
H

i_Iil involving a step increase from oI to o2 is indicated as OABC in Fig. 2.

ii:1 The stress is held constant at oI in o _ t < tA (tA being the time corre-

i! sponding to point A). At t = tA the stress is abruptly increased to o2

_ (along AB) and again held constant. We suppose that creep rupture occurs at

!! the time t = tc (corresponding to the point C in Fig. 2) Here, _ is re-i

ii
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presented as decreasing (indicating further damage) as the stress is increased

abruptly to 02. Correspondingly,

tf dt
t <i (2oi

at the failure time tf = tc.

The case where a step down in stress is made from a2 to aI at t = tA

is depicted in Fig. 3. Here, _ is represented as increasing (indicating

partial healing) as the stress is decreased and,

fo tf dt
>i (21)

at the failure time tf = tc.

Over the intervals when the state point follows the path segment OA or BC

in Figs. 2 or 3, ; = 0 and the first term in Eq. (10) does not contribute to

;. During initial load-up ¢ = i, corresponding to the undamaged material

condition, and likewise the first term does rot contribute, in accordance with

Eq. (11). However, as the abrupt stress change AB is made, the material has

incurred prior damage and, as the time interval of loading is short, the first it

term in Eq. (10) dominates; the continuity _, then increases or decreases,

depending on the nature of h(o,_) and the stress history.

In light of the foregoing discussion, CA' (e.g., in Fig. 2), is found by

integrating Eq. (10), including only the second term, thus

,m_ = - Co_ dt (22)

or

8
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C*

_im.Jar]y,_B is found by

= - Codt_ (24)
LA

or

{tc - tA_/(m+l)

_B = _ tR(a2)/ (25)

The change in _ during the abruptstep change from _1 to 02 is thus the

differenceof Eq. (23) and Eq. (25). Equivalently,we know the pointsA'

(al,_A)and B' (a2,_B)as projectedinto the a,_ plane (Fig.4).

If we were to performa sequenceof step tests of this kind, each starting

at a = aI and with a step (up or down) at t = tA, we would map out a curve

in the a,_ plane containingA' and B'. Further,if we conductedseveral

sequencesof step tests commencingat other stress levelsand with stress

changesat other times,we would eventuallymap out an entire familyof curves

in a region of the a,_ plane (Fig. 5). Figure5 is schematicand real data

would likelyshow considerablescatter,nevertheless,it is reasonableto ex-

pect that the underlyingtrendscan be satisfactorilyrepresentedby a family

of curves

p(a,_)= const. (26)

which fits the data in a least-squaressense.

As the abruptstress changeoccurs in any of the step-stresstests, the

state point moves a]ong one of the curves representedby Eq. (26). As discussed

earlier,the first term in the rate Eq. (10) governs,i.e.,we have

$ = h(o,+)_ (27)

9
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I We can eliminatetime in Eq• (27) and write

[
!

L_ Now, we want the experimentalcurves representedin Eq• (26) to be the
i

i.... _ra]-curves of Eq. (28), that is to say, we want the 'Functiunh(a,¢) to

i be given by

i ' _ = h(,,,) (29)

i'

_! With p(o,,)specified,and thus apl_o and apla, known,we then have

_o° an explicitform for h(o,_)

_-i This completesthe specificationof the rate equation,Eq. (10), and we

___:_Ii can supposedlyuse it to predictthe time to creep failureunder an arbitrary

_:_ stresshistory o(t). In general,this is done by numericallyintegrating

Eq. (I0) to determinethe time at which 0 _ o.

_v_ The approachfollowedhere in determiningthe function h(o,_) on the

,:_ basis of two-stepcreep rupturetests is analogousto that followedby Leckie
r-
i=-

_-_ and Ponter (Ref. 11) in obtainingrepresentationsof creep deformationunder
r 'i_

iz'! variablestressconditions. In their case, steppedcreep tests provideda
FI'

_i_ descriptionof how to move from one constantstress creep curve to anotileras

_ the stressvaried. Here, steppedcreep rupturetests similarlyprovidea

_ descriptionof how to move from one constantstress rupturecurve, in the

,o, space of Fig. 2 or 3, to anotheras the stress is varied•

The success of the model proposed here depends on the ability to conduct

a sequenceof accurateand repeatabletwo-stepstress rupturetests. Assuming

this can be done, the model must, at the very least,.giveback accuratepre-

dictionsof creep ruptureunder steppedloading,since such tests comprise its

i oata base. In principle,the model should also providegood failurepredic-

10
w
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_ions under ger,._ral(t_qsJie) variable stress conditions, alLhough the proof

of th_s must obvious|y come from experiment.

THE PROPOSEI)MODEL AND THE TIME_FRACTION LAW

To demonstrate that Eq. (iO) is equivalent to the form shown in Eq. (4),

we integrate Eq. (10) for an arbitrary stre_s history a(t) as follows:

_md_ = _mh(a,_)_dt - condt (30)

Usin9 Eq. (13) and calling oi = a(o) and af = o(tf), we get

of fo tf dt
1 = - (m + 1) ,_(o,,)do + tD-'Z_'C_) (31)

o i

or i

j_o °tf dt
tR--_: 1 + = (32)

in which

f°,: (m + 1) ,_(o,,)do (33)

oi

Note that the integral in Eq. (33) is path dependent so that the value of = :_

depends on the stress history o(t).

SOME HYPOTHETICAL FORMS OF p(o,_)

The key to the behavior under variable stress lies in the form of p(o,_)

in Eq. (26). Experiments are likely to show that the p curves of Fig. 5 are

characteristically different in different regions of the o,_ plane, reflect-

ing distinct rupture mechanisms. In any case, if a sufficient number of vari-

able stress rupture tests are conducted spanning the relevant regions of the

o,_ plane, this information should be inherently built-in to the model.

00000001-TSA13



In the absence ot sufficiF:ntvariable stress tests, it is instructlve to

hypothesize some simple forms _f p(,,_) and examine the_.c_nsequences on the

predicted creed rupture behavior.

In regions of the a,_ plane where Eq. (26) represents a Family of

horizonLai lines (Fig. 6), h = c in Eq. (10) and the laodelis equivalent to

the usua] time-fraction law expressed in Eq. (I).

An interesting case is provided by the family of curves

p(a,_) - 1 -_ _ I - const. (34)
o a 0

in which s and ao are constants. We then have
l

I. S
i

= _
- 0

, and i
i

ap s _-i i

a_ =-;_ (36) ij
-J

so that

- s--_ (37)

Note that, in agreement with Eq. (11), ,_

h(o,l) = o (38)

Equation (10) thus becomes

; =_1__ ;- C °--- (39)so m
I
I

The family of curves corresponding to s = 2 and several values of oo in 4

Eq. (34) is shown in Fig. 7. Using these and appropriate values for m, o.,

j and of, we can calculate the time-fraction integral, Eq. (32), for any given

• s_r_s history. Consider, for example, the two-step tests depicted in Fig. 8;
i

the first involves a step-up in stress from _i = 140 to _f = !75 MPa (Fig.

..... O0000001-TSA14



8(a)) and the secona a step-down from a i = 140 to af = 105 MPa (Fig. 8(b)).

With m taken as m = 1.3, values of the time-fraction integral have been cal-

culated and are given in Tables I and II for the stress histories of Figs. 8(a)

and (b), respectively. The quantity B in the tables denotes the fraction of

the rupture life tR(a i) = t R (140) at which the step up (or down) in stress

is made. When the step is made relatively early in life (e.g., B : 0.2), the

value of the integral at failure is not very different from unity; when the

step is made re1_tively late in life (e.g., B = 0.8), the integral may differ

substantially from unity.

The point 0 in F_g. 7 represents the point in the _,_ plane from which

the abrupt stress step is made corresponding to B = 0.2 in Table I or II. As

the stress is increased from 140 to 175 MPa, the state point moves from 0 to a.

As the stress is decreased to 105 MPa, the point moves to b. Only slight addi-

tional damage or healing is incurred during the stress change. The predicted

values for the time-fraction integral at failure are

tf dt
: 0.95 (40)

for the step-up in stress, and

tf !_

dt

_= 1.05 (41)

for the down-step.

The point O' in Fig. 7 indicates the point from which a step is made with

= 0.8. The material has now incurred considerable prior creep damage, and a

step-up in stress to 175 MPa moves the state point to a', indicating substan-

tial additional damage as the stress is increased. The value of the time-

fraction at failure in this case is

13

l,
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tf dt 0.sS (42)

Note that here, following the expenditure of 0.8 of the rupture life at

o = 140 MPa, a stress increaseto approximately193 MPa or greatercauses

failurei_ediately as the stress is changed,correspondingto _ ) o.

A step down in stressfrom O' moves the state point to b_ providingpar-

tial healing,and the integralat failureis

tf dt = 1.18 (43)

Additionalforms of p(a,_) can be hypothesizedand calculationsmade

similarto those above,however,such exerciseswould probablynot be fruitful

at present. It is preferableto wait until sufficientexperimentaldata can

be generatedand the actualforms of p(a,_) and h(a,_) determined.

It is possiblethat a single family of curves in the o,_ plane is not

sufficientto representthe effectof both stress increasesand stressde-

creaseson the creep damagedmaterial. If this were the case, the same prin-

ciples and proceduresoutlinedabove are still applicablewith the following _

modificationsand reinterpretations.The damagerate equation,Eq. (10), could

then be modifiedto

n

= hI(a,_)<_>+ h2(o,_)<-a>- C o_._m (44)

with <x> = x; x > o

and <x> = o; x < o

in which

14
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and

The family of curves represented by pl(o,,) = const, in the o,, plane would

be determined from a sequence of stepwise stress rupture tests involving a

step-up in stress and the curves p2(o,¢) = const, from a sequence with a

step-down in stress.

CONCLUSIONS

The proposed damage model is limited in applicability to a narrow range

of conditions, i.e., uniaxial, isothermal, variable tensile stress histories.

Nevertheless, the existing technology supporting the design of elevated tem-

perature components (e.g., the guidance provided by ASME code case N-47) does

not provide an adequate methodology for accurately predicting creep rupture

even under these restricted conditions.

The attempt here is to provide a simple model which has the potential for

predicting failure in, perhaps, the most fundamental of problems of high- _

temperature design, creep rupture under quasi-steady, long-term loading. Once

these predictions can be made with reasonable consistency and accuracy, only

then does it seem appropriate to concentrate on further complexities such as

cyclic stressing, multiaxiality, creep-fatigue interactions, etc.

As the present creep damage model is based on both standard creep rupture

tests and stepwise stress rupture tests, it is expected that it should provide

accurate predictions under general (tensile) variable stress conditions. This, ,

of course, must ultimately be demonstrated by experiment.

15 ",
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_'" Figure i. - Representationof constantstresscreep rupturetests in O,a, dt
L

i space.
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r_ Figure2. - Representationof step-upcreep rupturetest in (,,o,fdt_ space.
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i

Figure 3. - Representation of step-down creep rupture test in (m,o, fdt_
V .,I tRj space.

I

Figure 4. - Projection of path segment AB on o,¢ p)ane.
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P (o,_1 • const.

_0

Figure 5. - Family of curves p(o,_) = const, in o,_ plane.

/- _p• const.; h- 0
I

/
/

o

Figure 6. - Familyof _ = const, curves in o,_ plane.
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0 II_ 140 175 350
o (MPa)

Figure7. Familyof curves p(o,_) - 1 - Cs- ---=-const, in o,¢ plane.
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I

Figure 8. - Examplesof step-upand step-downstress rupturetests.
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